Electronic Supplementary Material

Improved plasmid-based recovery of coxsackievirus A16 infectious clone driven by human RNA polymerase I promoter

Xiaoli Wang, Chaoyun Shen, Tan Chen, Ke Lan, Zhong Huang, Yunfang Zhang, Qingwei Liu igta

Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

Supporting information to DOI: 10.1007/s12250-016-3716-6

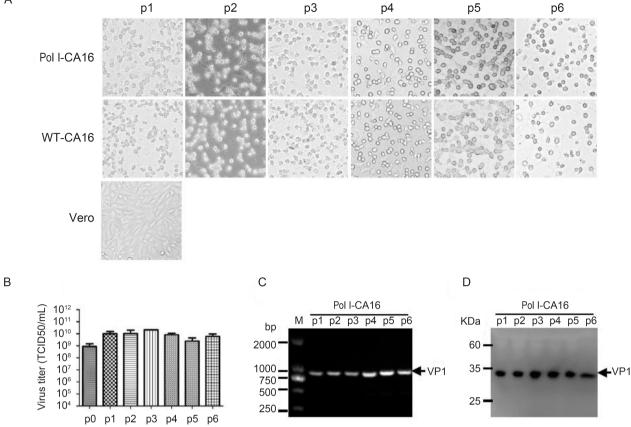


Figure S1. Stability of the recovered Pol I-CA16 particles. (A) Viral titers of Pol I-CA16. Each generation was titrated by TCID50 assay on Vero cells. Statistical analyses were performed with GraphPad Prism version 5. (B) Detection of Pol I-CA16 negative-sense RNA. RNA was extracted from viral particles from each generation and negative-sense RNA was detected by RT-PCR. Lane M,DNA marker; lane p1–p6, PCR products from the recovered infective virus. (C) Viral capsid proteins of Pol I-CA16. Proteins were detected using CA16 specific anti-VP1 antibody by western blotting (Liu et al., 2011). Lane p1–p6, Pol I-CA16 recovered from infected cell lysates. (D) Recovered Pol I-CA16 caused CPE upon passaging. The recovered Pol I-CA16 virus or WT-CA16 (equivalent MOIs) was passaged on Vero cells over six generations, and each generation resulted in CPE, as presented.

Primer	Sequence (5'-3')	Enzyme site
P1	ACCGCCGGGAGGGCGTCCCC	None
P2	GCGGCCGCTCTAGAGAGCTCAAGCTTAATAACCCGGCGGCCCAAAA	Not I, <u>Xba I, Hind III</u>
P3	GGCCGC <u>AGATCT</u> CCCCCCAACTTCGGAGGTCGACCAGTACTCC	Xba I
P4	GGCCGGAGTACTGGTCGACCTCCGAAGTTGGGGGGGG <u>AGATCT</u> GC	Xba I
P5	GCC <u>AAGCTT</u> AAAACAGCCTGTGGGTTGTTCCCACCC	Hind III
P6	CGGG <u>TCTAGA</u> GCGTAGACTCTTTTGGCTTCAGTC	Xba I
P7	CTGG <u>TCTAGA</u> AAGAAGGATGAACAACTAC	Xba I
P8	TAT <u>TCTAGA</u> TTTTTTTTTTTTTTTTTTTTTTTT	Xba I

Table S1. Primers used in this study