Electronic Supplementary Material

Coexistence of multiple genotypes of porcine epidemic diarrhea virus with novel mutant S genes in the Hubei Province of China in 2016

Zhe Zeng ${ }^{\text {# }}$, Ting-Ting Li ${ }^{2 \#}$, Xin Jin ${ }^{2}$, Fu-Hu Peng ${ }^{2}$, Nian-Hua Song ${ }^{2}$, Gui-Qing Peng ${ }^{1 凶}$, Xing-Yi Ge ${ }^{3 凶}$
1. State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
2. Hubei Animal Disease Prevention and Control Center, Wuhan 430070, China
3. College of Biology, Hunan University, Changsha 410082, China

Supporting information to DOI: 10.1007/s12250-017-4021-8

S1. PEDV-positive samples among those collected from 34 farms in 6 districts in the Hubei Province of China

Location	Farms	Sample types	PEDV positives/total	Total positives
Ezhou	Farm 1	Feces	3/6	8/31(25.8\%)
	Farm 2	Feces	0/5	
	Farm 3	Feces	5/5	
	Farm 4	Feces	0/5	
	Farm 5	Feces	0/5	
	Farm 6	Feces	0/5	
Huanggang	Farm 7	Feces	4/5	28/29(96.6\%)
	Farm 8	Intestine	$2 / 2$	
		Feces	10/10	
	Farm 9	Intestine	$2 / 2$	
		Feces	10/10	
Xiangyang	Farm 10	Intestine	5/5	14/40(35\%)
	Farm 11	Intestine	2/2	
	Farm 12	Intestine	2/2	
	Farm 13	Intestine	3/3	
	Farm 14	Fecal Swab	0/10	
		Intestine	0/1	
		Feces	0/3	
	Farm 15	Intestine	0/2	
		Feces	0/5	
	Farm 16	Intestine	1/1	
		Fecal Swab	1/3	
	Farm 17	Fecal Swab	0/3	
Jingzhou	Farm 18	Feces	$2 / 2$	19/29(65.5\%)
	Farm 19	Feces	3/3	
	Farm 20	Feces	0/4	
	Farm 21	Feces	4/4	
	Farm 22	Feces	2/4	
	Farm 23	Feces	$2 / 2$	
	Farm 24	Feces	2/4	
	Farm 25	Feces	3/3	
	Farm 26	Feces	1/3	
Yichang	Farm 27	Feces	0/5	1/29(3.4\%)
	Farm 28	Feces	0/5	
	Farm 29	Feces	0/6	
	Farm 30	Feces	0/6	
	Farm 31	Feces	1/7	
Jingmen	Farm 32	Feces	0/4	4/14(28.6\%)
	Farm 33	Fecal Swab	0/5	
	Farm 34	Fecal Swab	4/5	
Total				74/172(43\%)

S2. New amino acid mutations in the spike proteins of field strains in Hubei in 2016

IA2	S Q Q P	G	A	N	T		N	R	P	T		\checkmark	D	1	P			L	1	S	1		D	V I		S	H	1	V	F	H	H	A	T	H	S		P	E	T	T	F	A	V	1	T	A	T	V	D	L	E	Q	H				L	Q	V
GD17	S Q Q P	G	A	N	T	N	N	R	P	T		\checkmark	D	1	P		L	L	1	S	N	M D	D	V		S	L	1	V	F	H	H	A	T	H	S	F	P	E	T	T	F	A	V	1	T	A	T	V	D	L	E	Q	H	T			L	Q	V
CHGD-01	S Q QP	G	A	N	T	N	N	R	P	T		V	D	1	P	-	L	L	1	S	1		D	V		S	H	1	V	F	H	H	A	T	H	S	F	P	E	T	T	F	A	V	1	T	A	T	V	D	L	E	Q	H	T			L	Q	V
CH-SDLQ-2015	S Q Q P	G	A	N	T		N	R	P	T		V	D	1	P		L	L	1	S		M D	D	V	S	S	H	V	V	F	H	H	A	T	P	S	F	P	E	T	T	F	A	V	1	T	A	T	V	D	L	E	Q	H	T			L	Q	V
CH-CCC-2013	S Q Q P	G	A	N	T		N	R	P	T		V	D	1	P		L	L	M	S	1		D	V		S	H	1	V	F	H		A	T	P	S	F	P	E	T	T	F	A	V	1	T	A	T	V	D	L	E	Q	H	T			L	Q	V
CH-HGC	S Q Q P	G	A	N	T		N	R	P	T		\checkmark	D	1	P		L	L	M	S	1		D	V I	S	S	H	1	V	F	H	H	A	T H	H	S	F	P	E	T	T	F	A	V	1	T	A	T	V	D	L	E	Q	H	T			L	Q	V
CH-XBC-01-2015	Q-GP	G	A	N	H		N	R	P	T		V	D	1	P		L	L	1	S	N	M D	D	V		S	H	1	V	F	H		A	T	H	S	F	P	E	T	T	F	A	V	1	T	A	T	V	D	L	E	Q	H	T			L	Q	V
OH851	Q-GP	G	A	N	H		N	R	P	T		V	D	1	P		L	L	1	S	N	M D	D	V	S	S	H	1	V	F	H		A	T	H	S	F	P	E	T	T	F	A	V	1	T	A	T	V	D	L	E	Q	H	T			L	Q	V
HUA-PED58	Q-GP	G	A	N	T		N	R	P	T		V	D	1	P			L	1	S	N	M D	D	V	S	S	H	1	V	F	H	H	A	T	H	S	F	P	E	T	T	F	A	V	1	T	A	T	V	D	L	E	Q	H	T			L	Q	V
ZL29	Q-GP	G	A	N	H		N	R	P	T		V	D	1	P		L	L	1	S	1		D	V		S	H	1	V	F	H			T	H	S	F	P	E	T	T	F	A	V	1	T	A	T	V	D	L	E	Q	H	T			L	Q	V
Virulent CV777	Q-GP	G	A	N	T		N	R	P	T		V	D	1	P		L	L	1	S		M D	D	V		S	H	1	V	F	H		A	T		S	F	P	E	T	T	1	A	V	1	T	A	T	V	D	L	E	Q	H	T			L	Q	V
AttenuatedDR13	Q-GP	G	A	N	T		S	R	P	T		V	D	1	P		L	W		S	N	M D	D	V		S	H	1	V	F	H	H	A	T	H	S	F	P	Q	T	T	F	A	V	1	T	A	T	V	D	L	E	Q	H	T			L	Q	V
AttenuatedCV777	Q-GP	G	A	N	T	S	S	R	P	T		V	D	1	P		L			S		M D	D	V I		S	H	1	V	F	H		S	T	H	S	F	P	Q	T	T	F	A	V	1	T	A	T	V	D	L	E	Q	H	T		V	L	Q	V
Consensus	S Q Q P	G	A	N	T		N	R	P	T		V	D	1	P			L	I	S				V I		S	H	I	V	F				T H		S		P	E	T	T	F	A	V	1	T	A	T		D		E	Q	H	T				Q	V

www.virosin.org

S4. A fasta format file of the nt pairwise alignment of S genes
S5. A fasta format file of the aa pairwise alignment of spike proteins

S6. Phylogenetic analysis of full-length amino acid sequences of spike proteins of PEDV and transmissible gastroenteritis virus (TGEV). The phylogenetic tree was constructed based on the maximum likelihood method using a Poisson model under 1000 replicates of bootstrap values; for each node, bootstraps $\geq 50 \%$ are shown. The scale bar represents 0.005 substitutions per amino acid. The strain names, isolation years and places, and GenBank accession numbers are shown. $S(n t)$ and $S(a a)$ indicate the complete length of the nucleotide and amino acid sequences of the S genes and S proteins, respectively. The results for the GI, GII, and INDEX-like genogroups were inconsistent with those of previous studies; subgroups shown in the figure were proposed in this study for better description of the genetic diversity of spike proteins. Spike sequences detected in this study are colored and in bold. The TGEV was used as an out-group.

