Electronic Supplementary Material

Development of RNA Polymerase III-Driven Reverse Genetics System for the Rescue of a Plant Rhabdovirus

Xiaoyan Zhang¹ • Kai Sun² • Yan Liang¹ • Chenglu Zhao¹ • Zhenghe Li¹,³,⁴⊠

- 1. State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- 2. Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- 3. Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- 4. Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China

Supporting information to DOI: 10.1007/s12250-021-00390-y

Supplementary Materials and methods

Plasmid construction

To generate the plasmid p35S-MR for the transcription of SYNV genome-sense MR driven by the 35S promoter, we amplified the MR cassette from the previously described antigenome-sense MR construct pSYNV-MR_{eGFP}. (Ganesan al.2013) with the primers Trailer/35S/F (5'-DsRed (5'-Leader/HDV/R tttcatttggagaggAGAGACAAAAGCTCAGAACAATC-3') and atgccatgccgacccAGAGACAGAAACTCAGAAAATAC-3'). The PCR products were ligated into the Stu I and Sma I doubled digested pCB301 binary plasmid (Yao et al. 2011), facilitated by the homologous sequences shown in lower case letters by ClonExpress II One Step Cloning (Vazyme, China).

The promoter sequences of *Arabidopsis thaliana U3B* (At5G53902), *U6* (At3G13855), and *tRNA Gly-snoR43.1* (At1G06880) genes, were individually amplified by PCR from genomic DNA using the primer pairs U3B/F (5'-tgattacgccaagcttTTTACTTTAAATTTTTCTTATGGCT-3') and U3B/R (5'-tgattacgccaagcttTTTACTTTAAATTTTTCTTATGGCT-3')

www.virosin.org

tgagcttttgtctctGACCAATGGTGCTCCCT-3'), U6/F (5'-tgattacgccaagcttCATTCGGAGtTTTTGTATCTTG-3') and tRNAGly/F and (5'-U6/R (5'-tgagettttgtctctCAATCACTACTTCGACTCTAGCTG-3'), tRNA^{Gly}/R (5'gggtggttttaagcttACTCATTCTAGCTTTCTTAC-3') and tgagcttttgtctctTGCACCAGCCGGGAATCG-3'), respectively. These promoter regions correspond to the nucleotide coordinates -325/+1 (*U3B*), -293/+1 (*U6*), and -127/+77 (*tRNA* ^{Gly}-snoR43.1), with +1 denotes the transcription initiation site. The putative terminator sequence of tRNA^{Gly}-snoR43.1 was amplified with the primer acgacaatctgaattTAATTGGCAGTAGCTGTCAAAC-3'). The sequences of these promoters and terminator are shown in Supplementary Table S1. To generate the Pol III promoter-driven MR expression vectors pU3B-MR, pU6-MR, and ptRNA-MR, we amplified the SYNV genome-sense MR and the ribozyme sequence from the plasmid p35S-MR using Trailer/F (5'-agagacaaaagctcagaacaatc-3') and HDV/R (5'-gagctctcccttagccatc-3'). This fragment, along the individual Pol III promoter fragments and the terminator fragment described above, were inserted into the Hind III and EcoR I digested pCB301 vector with ClonExpress MultiS One Step Cloning Kit (Vazyme, China).

To generate the plasmid pU6-tRNA-MR, we amplified the U6 promoter using the forward primer U6/F and reverse primer U6-tRNA/R (5'-CACTGGTGCTTTGTTCAATCACTACTTCGACTCTAGCT-3'). The fragment containing the tRNA^{Gly}, SYNV MR, and HDV sequence was amplified from the ptRNA-MR with the primers tRNA-MR/F (5'-AACAAAGCACCAGTGGTC-3') and (T)n/R. These two fragments were ligated into the *Hind* III and *Eco*R I digested pCB301 vector with the aid of ClonExpress MultiS One Step Cloning reagent.

To construct the plasmids ptRNA-SYNV and p35S-SYNV for transcription of the full-length SYNV gRNA, we amplified the cDNA fragment from the plasmid pSYNV-GFP (Wang *et al.* 2015). The fragment was digested with *Fse* I and *Aat* II, and then inserted into the ptRNA-MR or p35S-MR plasmids digested by *Fse* I and *Aat* II.

Agroinfiltration

The above plasmid constructs were transformed into *Agrobacterium tumefaciens* strain EHA105 by electroporation. Agrobacterial cultures were resuspended in the buffer (10 mmol/L MgCl₂, 10 mmol/L MES, pH5.6, 100 μ mol/L acetosyringone) and adjusted to an optical density at 600 nm (OD₆₀₀) of 0.7. SYNV minireplicon and agroinfection assays were carried out by adding one volume of the cell cultures harboring the MR or gRNA transcription plasmid to two volumes of 1:1 mixtures of *Agrobacterium* suspensions containing the plasmid pGD-NPL (Wang *et al.* 2015) and the viral suppressors of RNA silencing (VSRs) plasmids p19, γ b, and HC-Pro (Qian *et al.* 2017). In the negative control experiments, we used the mixed pGD-N and pGD-P cultures (Ganesan *et al.* 2013) to replace the pGD-NPL strain. For determination of the transcript levels, the

Agrobacterium cultures harboring the plasmid pGD-NPL were omitted from the mixtures.

Fluorescence microscopy and photography

The fluorescent foci in infiltrated leaves were visualized with a Zeiss Lumar V12 epifluorescence microscope (Carl Zeiss, Germany). Filter set Lumar 38 (excitation, 470/40 nm; emission, 525/50 nm) and Lumar 31 (excitation, 565/30 nm; emission, 620/60 nm) were used for GFP and RFP detection. Infected plants were photographed with ultraviolet (UV) illumination.

Protein analysis

Total protein extracts separated by 12.5% SDS-PAGE were transferred to polyvinylidene difluoride (PVDF) membranes, followed by detection with polyclonal antisera specific to SYNV virions (Jackson and Christie, 1977) and *N. benthamiana* Actin (Sangon Biotech, Shanghai, China), or monoclonal antibodies against GFP and RFP (Abcam, Cambridge, UK).

Quantitative reverse transcription PCR (qRT-PCR)

Total RNA samples were isolated from leaf tissues infiltrated with the ptRNA-MR, p35S-MR, ptRNA-SYNV, and p35S-SYNV at 2 dpi and were reverse transcribed into cDNA using ReverTra Ace® qPCR RT Master Mix with gDNA Remover (Toyobo, Japan). qRT-PCR assays were performed by using SYBR Green I Master kit (Roche, Rotkreuz, Switzerland) with primers specific to *GFP*, SYNV *P* and *G* genes and *N. benthamiana Actin* gene. *N. benthamiana Actin* gene was used as an internal reference for the relative quantification.

Table S1 Arabidopsis Pol III promoters and terminator sequences used in this study

Name	Sequence $(5' \rightarrow 3')$
tRNA ^{Gly} - snoR43.1 promoter	ACTCATTCTAGCTTTCTTACCAACTTGTCCCAATTCTTATTCAGTTATTCCATATCTTGACCAAAC CATTTTGATGAGAGTAAAAAAAAAGGTTTCTGGTATTTATT
U3B promoter	TTTACTTTAAATTTTTCTTATGGCTCAGCCTGTGATGGATAACTGAATCAAACAAA
U6 promoter	CATTCGGAGTTTTTGTATCTTGTTTCATAGTTTGTCCCAGGATTAGAATGATTAGGCATCGAACC TTCAAGAATTTGATTGAATAAAACATCTTCATTCTTAAGATATGAAGATAATCTTCAAAAGGCCC CTGGGAATCTGAAAGAAGAAGAAGCAGGCCCATTTATATGGGAAAGAACAATAGTATTTCTTATA TAGGCCCATTTAAGTTGAAAACAATCTTCAAAAGTCCCACATCGCTTAGATAAGAAAACGAAGC TGAGTTTATATACAGCTAGAGTCGAAGTAGTGATT <u>G</u>
tRNA ^{Gly} - snoR43.1 terminator	TATTTTAATTTTTTGAAATATTGCATTTTAAGTTTATACAAACTATTAATATCTTGTATCT GCCAAAATAGCCTGCAAATTCCACAGAACCAATTATGTTCAAGAGCTTGAGAACAGAACGTTTA CAGGATTCTTCACATTAAATACTCAAAAAAAGAAAGTTTACCCTTTTATGTTTGACAGCTACTGCC AATTA

Transcription initiation sites are underlined, and tRNA Gly sequence is marked in boldface.

References

- Jackson AO, Christie SR (1977) Purification and some physicochemical properties of sonchus yellow net virus. Virology 77:344-355
- Qian S, Chen X, Sun K, Zhang Y, Li Z (2017) Capped antigenomic RNA transcript facilitates rescue of a plant rhabdovirus. Virol J 14:113
- Yao M, Zhang T, Tian Z, Wang Y, Tao X (2011) Construction of *Agrobacterium*-mediated Cucumber mosaic virus infectious cDNA clones and 2b deletion viral vector. Scientia Agricultura Sinica 44:3060-3068